- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Kigner, Orrin (2)
-
Baker, Brian (1)
-
Banerji, Sourangsu (1)
-
Böhringer, Karl F. (1)
-
Coppens, Zachary (1)
-
Fröch, Johannes E. (1)
-
Gibson, Ricky (1)
-
Han, Zheyi (1)
-
Hendrickson, Joshua R. (1)
-
Hon, Philip W. (1)
-
Hon, Philip_W_C (1)
-
Huang, Luocheng (1)
-
Majumdar, Arka (1)
-
Meem, Monjurul (1)
-
Menon, Rajesh (1)
-
Mukherjee, Saswata (1)
-
Rollag, Joshua (1)
-
Saragadam, Vishwanath (1)
-
Sensale-Rodriguez, Berardi (1)
-
Tanguy, Quentin A. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Subwavelength diffractive optics known as meta-optics have demonstrated the potential to significantly miniaturize imaging systems. However, despite impressive demonstrations, most meta-optical imaging systems suffer from strong chromatic aberrations, limiting their utilities. Here, we employ inverse-design to create broadband meta-optics operating in the long-wave infrared (LWIR) regime (8-12μm). Via a deep-learning assisted multi-scale differentiable framework that links meta-atoms to the phase, we maximize the wavelength-averaged volume under the modulation transfer function (MTF) surface of the meta-optics. Our design framework merges local phase-engineering via meta-atoms and global engineering of the scatterer within a single pipeline. We corroborate our design by fabricating and experimentally characterizing all-silicon LWIR meta-optics. Our engineered meta-optic is complemented by a simple computational backend that dramatically improves the quality of the captured image. We experimentally demonstrate a six-fold improvement of the wavelength-averaged Strehl ratio over the traditional hyperboloid metalens for broadband imaging.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Kigner, Orrin; Meem, Monjurul; Baker, Brian; Banerji, Sourangsu; Hon, Philip_W_C; Sensale-Rodriguez, Berardi; Menon, Rajesh (, Optics Letters)We designed, fabricated, and characterized a flat multi-level diffractive lens comprised of only silicon with , focal , numerical aperture of 0.371, and operating over the long-wave infrared (LWIR) to 14 µm. We experimentally demonstrated a field of view of 46°, depth of focus , and wavelength-averaged Strehl ratio of 0.46. All of these metrics were comparable to those of a conventional refractive lens. The active device thickness is only 8 µm, and its weight (including the silicon substrate) is less than 0.2 g.more » « less
An official website of the United States government
